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SUMMARY

A fully explicit, characteristic-based split (CBS) method for viscoelastic flow past a circular cylinder,
placed in a rectangular channel, is presented. The pressure equation in its explicit form is employed via
an artificial compressibility parameter. The constitutive equations used here are based on the Oldroyd-B
model. No loss of convergence to steady state was observed in any of the results presented in this paper.
Comparison of the present results with other available numerical data shows that the CBS algorithm is
in excellent agreement with them at lower Deborah numbers. However, at higher Deborah numbers, the
present results differ from other numerical solutions. This is due to the fact that the positive definitiveness
of the conformation matrix is lost between a Deborah number of 0.6 and 0.7. However, the positive
definitiveness is retained when an artificial diffusion is added to the discrete constitutive equations at
higher Deborah numbers. It appears that the fractional solution stages used in the CBS scheme and
the higher-order time step-based convection stabilization clearly reduce the instability at higher Deborah
numbers. The Deborah number limit reached in the present work is three without artificial dissipation and
two with artificial dissipation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mathematical representation of viscoelastic flows is often expressed by differential type, hyper-
bolic, constitutive equations. Many currently available numerical solution procedures for such
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flows are subjected to strong instability, especially at higher Deborah numbers. It is also obvious
from the available literature that obtaining mesh convergence and convergence to steady state is
extremely difficult at higher Deborah numbers.

The mixed finite element algorithms have been dominating the viscoelastic flow modelling over
the last two decades [1]. Numerical stability of such schemes has been the focus of many studies,
especially at higher fluid elasticity. Some of the attempts to stabilize viscoelastic flow calculations
include elastic viscous split formulation (EVSS) [2, 3], explicitly elliptic momentum equations
(EEME) [4, 5], EVSS-G method [6] with an independent interpolation for velocity gradients,
adaptive EVSS [7], discrete EVSS (DEVSS) formulation [8], discrete EVSS-G method [9, 10] and
DAVSS-� formulation [11].

Majority of the reported work, using the Oldroyd-B model for flow past a circular cylinder, at
higher Deborah numbers (De), suffers from loss of convergence to steady state on fine meshes.
Phan-Thien and Dou [11–13] identified that the solution exhibits stress oscillations in the wake
along with large values of primary (first) normal stress difference at the front stagnation point
of a cylinder. Fan et al. [14] suggested that the solutions resulted from the higher De may be
numerical artefacts. Fan also indicated a lack of convergence of the solution beyond a De of
0.7. Coronado et al. [15] further explained that around De=0.7 the conformation tensor loses
its positive definiteness due to the sharp stress boundary layer developed on the cylinder surface.
It was shown by Caola et al. [16] that reaching a steady state beyond a De of unity is difficult. This
is due to the linear increase in the extra stress at the rear stagnation point. Alves et al. [17] and
Hulsen et al. [18] argued that the normal, extra stress variation in the wake of the cylinder resulted
in numerical divergence. Recently, Kim et al. [19] refined grids along the centreline and found a
singular behaviour of extra stresses at higher Deborah numbers in the wake region. In summary,
majority of the proposed methods have some form of stability problem beyond a Deborah number
of unity.

Fractional step methods (often referred to as pressure or velocity correction method) are currently
not very popular in the viscoelastic flow modelling. It is unclear why this method was considered
unsuitable for complex geometries and complex flow problems [11]. Our past experience shows
that these methods can be adopted to viscoelastic flow problems by incorporating appropriate
modifications [20]. The instability in the momentum equation is often the subject of discussion
by many previously published papers. It is known that the first-order convection, pressure and
extra stress terms in the momentum equation are the sources of spatial instability in their discrete
form if central type approximations are introduced. Another instability due to lack of pressure
stabilization is often reduced by introducing different interpolation functions for pressure and
velocity. Although this is an acceptable procedure, simplicity of equal order interpolation is lost.
The classical fractional step method [21], however, reduces the pressure instability by splitting the
equations into fractional stages and allows equal order interpolation. The classical fractional step
methods are known to introduce a first-order time error in pressure [22–25]. However, this can
be easily eliminated by suitable extra pressure stabilization [25, 26]. For steady-state problems,
however, this is not an issue and classical fractional step method is sufficient. The instability due to
the central-type spatial discretization of first-order terms in the momentum equation needs different
treatments and a stabilized form for the momentum equation is needed. Here, instead of classical
stabilization methods, we introduce a higher-order time stepping scheme via a characteristic-based
approach to achieve stabilzation [27]. The higher-order terms not only act as a stablizing mechanism
but also give a higher-order time accuracy. Since the method involves a split (fractional step) and
a characteristic-Galerkin approximation, it is referred to as the characteristic-based split (CBS)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:157–176
DOI: 10.1002/fld



VISCOELASTIC FLOW 159

method. Owing to the reasons cited above, the CBS scheme for viscoelastic flows can be stable
subjected to obtaining a stable solution for constitutive equations.

Our experience shows that applying simple explicit characteristic-Galerkin method [27, 28]
directly to the constitutive equations gives stable extra stress solutions up to a certain limiting
Deborah or Weissenberg numbers [20]. Beyond this number, though fully converged solution
can be obtained, the stress and pressure fields are normally marked with minor oscillations. The
limiting De, we previously found, was approximately unity [20]. Beyond this value, addition of an
extra discrete, artificial dissipation to the constitutive equations helps in the stabilization of spatial
oscillations. However, there was no need for extra additional viscosities in the momentum equa-
tion. This again demonstrates that the fractional stage solution procedure eliminates the need for
additional dissipation in the momentum equation. The artificial damping needed for the constitutive
equation is often very small to obtain a smooth solution at lower Deborah numbers. However,
at higher Deborah numbers the artificial damping may introduce its own extra drag component
if such damping is arbitrarily added and thus can artificially enhance the predicted drag values.
In our previous work [20], the extra dissipation helped to increase the Deborah number limit to
a value above unity and we provided results up to a Deborah number value of 1.6. Beyond this
value, although steady state was possible, the drag force was increasing uncontrollably due to the
extra dissipation. Thus, in the present work, we establish the performance of the CBS method
without and with adding additional damping. We add enough damping in a controlled manner just
to retain the positive definitiveness of the conformation matrix.

Over the last 10 years, the CBS method has been evolved to unify the viscous compressible
and incompressible flow calculations [20, 25, 28–40]. In the present paper, in addition to providing
extension of the CBS scheme to general viscoelastic flows and using unstructured meshes to
address the mesh convergence and related issues, we also provide a thorough analysis of the results
obtained in the presence and absence of additional, artificial damping. The results are presented
for a range of Deborah numbers between 0 and 3.

2. MATHEMATICAL FORMULATIONS

2.1. Governing equations

The non-dimensional isothermal fluid dynamics equations for viscoelastic flows in conservation
form may be written as

�W
�t

+ �F j

�x j
+ �G j

�x j
=0 (1)

where the variable vector is given as

W=(�,�u1,�u2)
T (2)

The convective acceleration vector F j in Equation (1) is defined as

F j =
(

�u j ,
�1 j p

Re
+�u1u j ,

�2 j p

Re
+�u2u j

)T

(3)
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The viscoelastic diffusion vector G in Equation (1) is given as

G j =
(
0,

1

Re
(−�n1 j −�p1 j ),

1

Re
(−�n2 j −�p2 j )

)T

(4)

where the Newtonian deviatoric stress tensor in the above equation is

�ni j = (1−�)

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�xk

�i j

)
(5)

and the non-Newtonian deviatoric stress tensor is given by the constitutive equations of extra
stresses, i.e.

�pi j =−De

[
��pi j
�t

+ �
�xk

(uk�
p
i j )−�pik

�u j

�xk
−�pjk

�ui
�xk

]
+�

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�xk

�i j

)
(6)

In the above governing equations, p is the pressure, � is the density, u j are the velocity components,
�i j is the Kronecker delta, �=�m0/�0 in which �m0 represents the polymer-contributed viscosity
and �0 represents the zero shear rate viscosity, Re is the Reynolds number and De is the Deborah
number defined as

Re= �∞u∞L

�0
; De= �u∞

L
(7)

where subscript ∞ indicates a free stream value, L is a characteristic length, � is the relaxation
time and �0=�n+�m0 in which �n represents the Newtonian dynamic viscosity. When 0<�<1,
the constitutive equation describes the Oldroyd-B model. The upper convected Maxwell (UCM)
model is obtained when �=1. Some other viscoelastic fluid models may be found in [41–43].
2.2. CBS formulation

The CBS scheme is based on the characteristic-Galerkin procedure and a fractional step method
[29, 38]. It is widely used to carry out fluid dynamic calculations. In this paper, fully explicit
CBS-based artificial compressibility (CBS-AC) form has been employed to solve viscoelastic flow.
Following the intermediate momentum at the first step, the pressure equation derived from the
mass conservation is used at step 2. The velocity field is corrected at the third step. Finally,
the constitutive equations are solved at the fourth step. The semi-discrete form of these steps is
expressed

Step 1: Intermediate momentum

�U �
j =U �

j −Un
j

= �t

[
− �

�xk
(ukU j )+ 1

Re

��ni j
�xi

+ 1

Re

��pi j
�xi

]n

+ (�t)2

2

{
um

�
�xm

[
�

�xk
(ukU j )− 1

Re

��pi j
�xi

]}n

(8)

where Un
j =Uj (tn)=�unj , �t= tn+1− tn and � indicates an intermediate quantity.
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Step 2: Pressure

1

Re

(
1

c2

)n

�p ≈ 1

Re

(
1

�2

)n

(pn+1− pn)

= −�t

[
�Un

j

�x j
+	1

��U �
j

�x j
− �t	1

Re

(
�2 pn

�x j�x j
+	2

�2�p

�x j�x j

)]
(9)

where c is the speed of sound which assumes that density changes are related to pressure changes
for small compressibility or elastic deformability and approaches infinity for incompressible flows.
However, the wave speed c can be replaced by an artificial compressibility parameter � to carry
out incompressible flow calculations. For the explicit CBS-AC scheme, � depends on convective,
diffusive and viscoelastic wave speeds, i.e.

�=max(
,uconv,udiff,uvisc) (10)

where 
 is a small number and is taken equal to 0.5 in the present study, uconv=√
uiui , udiff= h

2Re
and uvisc=√

1/ReDe. The time step values are locally defined as

�t= h

uconv+�
(11)

More details on the time steps and artificial compressibility forms may be found in [20, 35, 38].
Step 3: Momentum correction

�Uj =Un+1
j −Un

j

= �U �
j −

�t

Re

�p
�x j

n+	2

+ (�t)2

2Re
unm

�2 pn

�xm�x j
(12)

where 0.5�	1�1 and 	2=0 for explicit forms and 0.5�	1�1 and 0.5�	2�1 for semi-implicit
forms. In this work, 	1=1 and 	2=0 are employed.

Step 4: Constitutive equation

��pi j = �pi j
n+1−�pi j

n

= �t

[
− �

�xk

(
uk�

p
i j

)
− �pi j
De

]n

+�t

[
�pik

�u j

�xk
+�pjk

�ui
�xk

+ �

De

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)]n

+ (�t)2

2

{
um

�
�xm

[
�

�xk
(uk�

p
i j )+

�pi j
De

]}n
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+ (�t)2

2

{
um

�
�xm

[
−
(

�pik
�u j

�xk
+�pjk

�ui
�xk

)]}n

+ (�t)2

2

{
um

�
�xm

[
− �

De

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)]}n
(13)

The spatial discretizations of the variables are given as

Uj = NuŨ j ; �Uj =Nu�Ũ j ; �U �
j =Nu�Ũ�

j ; u j =Nu ũ j

�p = Np�p̃; p=Npp̃; �pi j =N�p s̃
p
i j

(14)

where N are the shape functions and ∼ indicates a nodal quantity.
Applying the standard Galerkin approximation along with integration by parts, we obtain the

following weak forms:
Step 1: Weak form of intermediate momentum

∫
�
NT
u�U �

j d� = �t

[
−
∫

�
NT
u

�
�xk

(ukU j )d�− 1

Re

∫
�

�NT
u

�xi
(�ni j +�pi j )d�

]n

+ (�t)2

2

[∫
�

�
�xm

(umNT
u )

(
− �

�xk
(ukU j )+ 1

Re

��pi j
�xi

)
d�

]n

+�t

[∫
�
NT
u td d�

]n
(15)

In the above equation td =[�ni j/Re]n indicates the part of the traction corresponding to the stresses
only and n are the components of the outward normal to the boundaries. As the pressure term is
completely removed from the first step, we have only rest of the traction left in the equation.

Step 2: Weak form of pressure equation

∫
�
NT

p
1

Re

(
1

�2

)n

�pd� = −�t
∫

�
NT

p
�

�x j
Un

j d�

−�t
∫

�
NT

p

(
�U �

j −
�t

Re

�pn

�x j

)
n j d�

+�t
∫

�

�NT
p

�x j

(
�U �

j −
�t

Re

�pn

�x j

)
d� (16)

In the above equation, pressure and �U∗
i terms are integrated by parts and n j are the components

of the outward normal to the boundaries.
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Step 3: Weak form of momentum correction

∫
�
NT
u�Uj d� =

∫
�
NT
u�U �

j d�+�t
∫

�

�NT
u

�x j

pn

Re
d�−�t

∫
�
NT
u tp d�

− (�t)2

2Re

[∫
�

�
�xm

(umNT
u )

�p
�x j

d�

]n
(17)

In the above equation tp =[(pn+	2�p)/Re]n indicates only the part of the traction corresponding
to the pressure that was removed from step 1. It is simply ignored and assumed to be zero as the
full traction is prescribed in step 1 [39].

Step 4: Weak form of constitutive equation

∫
�
NT

�p��pi j d� = �t

[
−
∫

�
NT

�p
�

�xk
(uk�

p
i j )d�−

∫
�
NT

�p
�pi j
De

d�

]n

+�t

[∫
�
NT

�p

(
�pik

�u j

�xk
+�pjk

�ui
�xk

)
d�

]n

+�t

[
�

De

∫
�
NT

�p

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)
d�

]n

+ (�t)2

2

[∫
�

�
�xm

(umNT
�p )

(
− �

�xk
(uk�

p
i j )

)
d�

]n

− (�t)2

2

[∫
�

�
�xm

(umNT
�p )

�

De

(
�ui
�x j

+ �u j

�xi
− 2

3

�uk
�uk

�i j

)
d�

]n

− (�t)2

2

[∫
�

�
�xm

(umNT
�p )

(
�pik

�u j

�xk
+�pjk

�ui
�xk

)
d�

]n

− (�t)2

2

[∫
�

�
�xm

(umNT
�p )

�pi j
De

d�

]n
(18)

The higher-order terms in the above equations act as convection stabilizing terms. The final matrix
form of the four steps may be written as

Step 1: Intermediate momentum

�Ũ� =−M−1
u �t[(CuŨ+K�ũ+G�p −fu)−�t (KuŨ+fs)]n (19)

Step 2: Pressure

(Mp+�t2	1	2H)�p̃=�t[GuŨ+	1Gu�Ũ�−�t	1Hp̃−fp]n (20)

Step 3: Momentum correction

�Ũ=�Ũ�−M−1
u �t[GT

p(p̃
n+	2�p̃)+�tQpp̃n] (21)
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Step 4: Constitutive equation

�s̃p =−M−1
�p �t[C�p s̃

p+K�p s̃
p−D�p s̃

p−D�]n (22)

where the velocity, pressure and extra stress variables are approximated using equal order inter-
polation functions at all computational points in the domain and the matrices are given as

Mu =
∫

�
NT
uNu d�; K� =

∫
�
BT (1−�)

Re

(
Io− 2

3
mmT

)
Bd�

Cu =
∫

�
NT
u (∇T(uNu))d�; G�p =

∫
�

1

Re
NT
u (∇T(spN∗

�p ))d�

Ku = −1

2

∫
�
(∇T(uNu))

T(∇T(uNu))d�; fu =
∫

�
NT
u td d�

Mp =
∫

�
NT

p

(
1

Re�2

)n

Np d�; H=
∫

�

1

Re
(∇Np)

T∇Np d�

fp = �t
∫

�
NT

p

[
NuŨn+	1

(
�Ũ�− �t

Re
∇pn+	2

)]
nT d�

Gp =
∫

�

1

Re
(∇Np)

TNu d�; C�p =
∫

�
NT

�p (∇T(uN�p ))d�

M�p =
∫

�
NT

�pN�p d�; K�p = M�p

De

D� =
∫

�

�

De
NT

�p (∇T(uNu))d�; Gu =
∫

�
(∇Np)

TNu d�

D�p =
∫

�
NT

�p (∇T(uNu))d�; Qp = 1

2Re

∫
�
(∇T(uNu))

T∇Np d�

fs = 1

2

∫
�
(∇T(uNu))

T(∇T(spN�p ))d�

(23)

In the above equation, the strain shape function matrix B is given as

B=SNu (24)

where S is a strain matrix operator derived from the deviatoric stress and strain relations. For a
two-dimensional case, it can be written as

S=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
�x1

0

0
�

�x2
�

�x2

�
�x1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

m=[1,1,0]T (26)
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and

Io=
⎡
⎢⎣
2

2

1

⎤
⎥⎦ (27)

3. DOMAIN, BOUNDARY CONDITIONS AND STEADY-STATE CONVERGENCE

3.1. Computational domain

The computational domain consists of a stationary circular cylinder placed in a rectangular channel
at a distance of 12R from the inlet, where R is the radius of the cylinder. The distance from the
centre of the cylinder to the channel walls is equal to 2R. The total distance from inlet to exit
section is 28R. The geometry and boundary conditions are shown in Figure 1.

A total of four unstructured meshes were generated. They were generated by changing the
degree of refinement close to the region around the cylinder. Figure 2 shows the four meshes in
the vicinity of the cylinder. The typical element size on the cylinder wall for the four meshes used
are, respectively, 0.10924, 0.05474, 0.00633 and 0.00137.

As mentioned before, the Oldroyd-B model is employed in the present study and a viscosity
rate of �=0.41 is assumed. The convection terms in the momentum equations are assumed to be
zero to obtain equations for creeping viscoelastic flows.

3.2. Boundary conditions

The inlet and exit velocity profiles are assumed to be fully developed and they are given as

u1=1.5

(
1− x22

4

)
(28)

u2=0 (29)

28R

12R

2R

4Reu1 R o

2

2R

x1

ex

Figure 1. Viscoelastic flow past a circular cylinder placed in a rectangular channel.
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Figure 2. Oldroyd-B fluid flow past a circular cylinder: (a) mesh A (nodes: 13 977; elements: 27 267;
�d=0.10924); (b) mesh B (nodes: 16 690; elements: 32 617; �d=0.05474); (c) mesh C (nodes: 33 189;
elements: 64 759; �d=0.00633); and (d) mesh D (nodes: 82 856; elements: 160 978; �d=0.00137).

On the channel solid walls and cylinder surface, no slip conditions are assumed. On the basis
of the fully developed hypothesis, the steady distributions of extra stresses at the inlet section in
their non-dimensional form are given as [44]

�p11=2�De

(
�u1
�x2

)2

(30)

�p12=�
�u1
�x2

(31)

�p22=0 (32)
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The extra stresses on the channel walls are identical to inlet section (Equations (30)–(32))
[11, 20]. After several numerical calculations by employing different boundary conditions on the
cylinder wall, we found that prescribing no boundary conditions for the extra stresses on the
cylinder wall gives the best solution. Therefore, no extra stress boundary conditions are prescribed
on the cylinder wall in the present study.

3.3. Steady-state convergence

The steady-state convergence criterion is fixed based on the L2 norm of the residual of the
equations. Here, the norm of difference between time step n+1 and n quantities is normalized by
the quantities at time step n+1. It is given as

‖e‖�
2 = [∑m

i=1(‖/‖n+1
i −‖/‖ni )2]1/2

[∑m
i=1(‖/‖n+1

i )2]1/2 (33)

where m is the number of nodes, � indicates the extra stress components and velocity. The above
tolerance was reduced to a value of at least 10−6 for extra stresses and 10−8 for velocity components
to assume a steady state.

4. POSITIVE DEFINITIVENESS AND ARTIFICIAL DAMPING

The performance of computational methods for creeping viscoelastic flows is often monitored by
calculating the eigenvalues of an additional stress tensor [45]. In this study, we also monitored
the additional stress tensor, which is referred to as the conformation tensor and is defined as
�i j =�pi j +(�/De)�i j . It is anticipated that the additional stress tensor remains positive definite at
lower Deborah numbers. At higher Deborah numbers, positive definitiveness may be lost without
additional damping introduced to the discrete constitutive equations. As far as we are aware,
there are only two papers on Oldroyd-B fluid flow past a circular cylinder to explicitly monitor
the positive definiteness of the conformation tensor, although some works construct methods to
preserve positive definitiveness [18]. Caola et al. [16] produced results up to a Deborah number of
unity without losing the positive definiteness of the conformation tensor. However, their method
failed to give steady-state solution beyond a Deborah number of unity. There are two important
differences between the present and Caola et al.’s results. They used structured mesh and their
steady-state convergence criterion is less stringent than the present results. However, their finest
mesh consists of slightly smaller element size than the mesh we employed in the calculations.
Another structured mesh-based methodology presented by Coronado et al. [15] predicted results
without losing the positive definitiveness of the conformation matrix up to a Deborah number of
0.7.

The obvious step for preserving the positive definitiveness in the present explicit method is to
add artificial damping to the discrete constitutive equations at the fourth step of the CBS scheme. In
this study, we introduce one such way of improving the solution via an additional artificial damping
[20]. Such an artificial damping can also eliminate the negative eigenvalues of the conformation
matrix from the flow field. We briefly explain the theory behind the method below.

The artificial damping used here is an approximate second derivative-based method [20, 40, 46]
and it can be added to the discrete constitutive equations if necessary. Although the method has
been employed widely in the aerospace applications, this is relatively new to the viscoelastic flows.
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For completeness, the method is presented here. The following pressure switch-based artificial
damping is added to the discrete form of the constitutive equation (22)

�tM−1
�p

CeSe
�t

(M�p −M�p L)s̃p (34)

where M is the mass matrix and subscript L indicates a lumped matrix. The difference between
the consistent and lumped mass matrix along with the nodal extra stress values obtained in the
above equation is a result of the approximation used to calculate second-order derivatives of extra
stresses. Se in the above equation is an elementally averaged nodal pressure switch calculated on
the nodes as

Si = |∑n
1(pi − pk)|∑n
1 |pi − pk | (35)

where n is the number of nodes connected to i . In Equation (34) Ce is an user specified constant.
This value should be as small as possible to minimize the adverse influence of the extra dissipation.
As mentioned previously, Equation (34) is derived from approximation of second derivatives of
the extra stresses. However, the method can also be used without this approximation as explained
in Reference [40] but this needs slightly more computational time to calculate second derivatives.
The pressure switch (Equation (35)) can also be replaced with another similar switch constructed
from extra stress or other variables if necessary.

5. RESULTS AND DISCUSSIONS

Both quantitative and qualitative results are presented in this section. The drag force per unit
length of the circular cylinder is the major quantity used in the discussions and it is calculated in
non-dimensional form as

D=
∫ 2�

0
[(−p+�n11+�p11)cos	+(�n12+�p12)sin	]R d	 (36)

The mesh convergence histories of drag force with respect to mesh size, for a Deborah number
range between 0.0 and 3.0, are given in Figures 3 and 4. In Figure 3, convergence histories for
some selected Deborah numbers are given and compared against convergence histories provided by
other researchers. These convergence histories are obtained without adding any additional damping.
Convergence histories for all Deborah numbers considered in the present study are shown in
Figure 4. These figures show that, overall, the drag force converges reasonably on the unstructured
meshes used. At lower Deborah numbers, the drag forces obtained move towards zero element
size results given by Dou et al. [11]. The convergence history shows an increase in drag force
value with a decrease in element size up to a Deborah number value of 0.4. Beyond this value the
opposite trend is noticed. Figure 3 shows the convergence histories for Deborah numbers 0.3, 0.5,
0.7 and higher values. The present convergence history is also compared against the convergence
history given by Dou and Phan-Thien [11]. It is important to note here that the value given by
Dou and Phan-Thien, at zero mesh size, is an extrapolated value from their numerical study. Their
original study was only carried out on relatively coarse meshes. As seen, the present drag force
value at De=0.3 is very close to the value predicted by Dou and Phan-Thien. It is also noted that
at all other Deborah number values, present results are lower than the ones given in the literature.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:157–176
DOI: 10.1002/fld



VISCOELASTIC FLOW 169

 118

 120

 122

 124

 126

 128

 130

 132

 134

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

D
ra

g 
fo

rc
e,

 D

Element size on the cylinder, ∆d

De=0.3

Fully explicit CBS
DAVSS-w; Dou et al.
SMART; Alves et al.

DEVSS-G/SUPG; Kim et al.
GLS4; Coronado et al.

DEVSS/DG; Hulsen et al.
DAVSS-G/DG; Sun et al.

Extrapd(zero mesh size); Dou et al.

(a)

 115

 120

 125

 130

 135

 140

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

D
ra

g 
fo

rc
e,

 D

Element size on the cylinder, ∆d

De=0.5

Fully explicit CBS
DAVSS-w; Dou et al.
SMART; Alves et al.

DEVSS-G/SUPG; Kim et al.
GLS4; Coronado et al.

DEVSS/DG; Hulsen et al.
DAVSS-G/DG; Sun et al.

DEVSS-G/DG; Caola et al.
Extrapd(zero mesh size); Dou et al.

(b)

 115

 120

 125

 130

 135

 140

 145

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

D
ra

g 
fo

rc
e,

 D

Element size on the cylinder, ∆d

De=0.7

Fully explicit CBS
DAVSS-w; Dou et al.
SMART; Alves et al.

DEVSS-G/SUPG; Kim et al.
GLS4; Coronado et al.

DEVSS/DG; Hulsen et al.
DAVSS-G/DG; Sun et al.

Extrapd(zero mesh size); Dou et al.

(c)

 100

 120

 140

 160

 180

 200

 220

 240

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

D
ra

g 
fo

rc
e,

 D

Element size on the cylinder, ∆d

De=1.5~3.0

CBS; De=1.5
CBS; De=2.0
CBS; De=3.0

Dou et al.; De=1.5
Hulsen et al.; De=1.5

Sun et al.; De=1.5
Hulsen et al.; De=2.0

(d)

Figure 3. Oldroyd-B fluid flow past a circular cylinder. Comparison of drag force distribution
against typical element size on the cylinder surface for different Deborah numbers: (a) De=0.3;

(b) De=0.5; (c) De=0.7; and (d) De=1.5–3.0.

For De=0.5 and 0.7, present drag force values are slightly lower than Dou and Phan-Thien but
very close to the zero mesh value predicted by Dou and Phan-Thien. This trend continues for
the higher Deborah numbers, as shown in Figures 3 and 4. Unlike Dou and Phan-Thien’s results,
the change in the drag force in the present study with refinement is small. This indicates that
even on coarse meshes the solution obtained here is close to the expected, converged solution. In
other words, CBS solution presented in this study shows a faster convergence. As mentioned in
the Introduction, many schemes failed to give a steady-state solution at Deborah numbers 0.7 and
above, especially on very fine meshes. However, the CBS procedure presented is converged to a
steady-state solution, even on the finest mesh used. At a Deborah number of 0.7, the CBS method
gives a solution close to Sun et al. [10] and Coronado et al. [15] at around the element sizes of
0.0561 and 0.0315 as shown in Figure 3(c). However, the present value of drag force is further
reduced with decrease in element size. Figure 3 also shows the mesh convergence histories for
Deborah numbers between 1.5 and 3.0. The drag values are compared against published results
wherever possible. It appears that the convergence is good.

Although, the percentage of difference between the present and other reported results is small,
the expected upward trend in the drag force beyond a Deborah number value of approximately
0.7 is not observed. The downward trend of the predicted drag force may be the result of lack of
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Figure 4. Oldroyd-B fluid flow past a circular cylinder. Comparison of the (a) total drag force, (b) pressure
part of the drag force and (c) stress part of the drag force distribution against typical element size on the

cylinder surface for different Deborah numbers.

dissipation and may also be a result of conformation matrix losing positive definitiveness. However,
one of best solutions available for viscoelastic flow past a circular cylinder [16] is not far from the
results given by the present CBS method. Caola et al.’s [16] results show no sudden increase in
drag force beyond a Deborah number of 0.7. However, many other studies predict a rapid increase
in drag force beyond a Deborah number of 0.7. In the following paragraphs, we attempt to find
more explanation on the behaviour of the CBS method and its accuracy. It is also clear from
Figure 4 that the mesh convergence is reasonable over the range of Deborah numbers considered
without the addition of any artificial damping.

Since the drag force predicted was not showing the expected trend, we monitored the eigenvalues
of the conformation tensor. It was clear from the results that the conformation tensor was losing
positive definitiveness beyond a Deborah number of 0.7. However, by switching the artificial
damping on and by adding sufficient damping just enough to remove negative eigenvalues, we
are able to retain positive definitiveness of the conformation tensor. So far, we are able to obtain
solutions up to a Deborah number of 2 without losing positive definitiveness.

Figure 5(a) shows comparison of the total drag force at different Deborah numbers obtained
from all the four meshes without the addition of the artificial damping. The solutions were also
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Figure 5. Oldroyd-B fluid flow past a circular cylinder. Drag force distribution on different unstructured
meshes used: (a) total drag; (b) pressure; (c) total stress; and (d) Newtonian/non-Newtonian stress.

obtained with the artificial damping on meshes C and D. As seen, the results obtained from Mesh A
(without damping) is not only away from other numerical results but also has a sudden jump in
the drag force value close to a Deborah number of 0.4. This is also evident from the pressure
component of the drag force shown in Figure 5(b). Further refinement increases the accuracy, but
the jump in the drag force and pressure is still visible on Mesh B (without damping), although
delayed to a Deborah number value of around 0.5. Meshes C and D, (without damping) on the
other hand, have given a smoother drag force and pressure distributions. Between the meshes C
and D, (without damping) the difference in total drag force is very small, demonstrating that the
drag force is converged to a stable value. However, the pressure distribution paints a different
picture. As seen from Figure 5(b) the pressure convergence is excellent up to a Deborah number
value of about unity. Beyond this limit, the pressure value predicted by the meshes C and D shows
the signs of minor divergence. The trend given by the stress component in Figure 5(c) is consistent
with the observation that the stress component values are converged up to a Deborah number value
of 0.7. Beyond this value, although the meshes C and D give smooth stress field, the convergence
is not satisfactory. Figure 5(d) shows the distribution of solvent and polymer contribution of the
drag forces.
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Figure 6. Oldroyd-B fluid flow past a circular cylinder. Distribution of �11 along cylinder surface and in
the wake: (a) De=0.7 and (b) De=1.0.

As seen the agreement of total drag force between the present and other results is excellent up to
a Deborah number of 0.7 without the addition of any additional damping. Beyond this value, even
the trend is not quite the same as in the majority of other numerical results. However, when the
negative eigenvalues are eliminated by adding the extra artificial damping, the drag force obtained
is quite close to Caola et al. [16] (see Figure 5(a)). It is also noticed that the upward trend in drag
force beyond a Deborah number of 0.7 is obtained when the additional damping is added. This
clearly shows that the additional damping is important in increasing the accuracy of computation.
In addition to obtaining a result very close to the fine mesh result presented by Caola et al. [16],
the artificial damping has also helped in obtaining the expected trend in drag force variation.

As mentioned before, some of the earlier works on flow past cylinder have blamed a steep
increase in extra stress value close to the rear and front stagnation points for the solution breakdown.
To assess the influence of the extra stress values close to the stagnation points, the extra stress
component �p11 is plotted in Figure 6 along the domain centreline. From the figures, it is clear
that large peak values of the stresses are predicted on the cylinder surface. However, the peak
extra stress values and their gradients predicted by CBS scheme at the rear stagnation point
are substantially lower than the values predicted by others. This may be another reason why
CBS scheme gives steady-state solution for Oldroyd-B fluid for higher Deborah numbers. Even
with the addition of the artificial damping, the stagnation value of extra stresses is not changed
dramatically.

To further explain the use of artificial damping, the eigenvalues with and without the inclusion
of artificial damping are compared in Figure 7 for a Deborah number of 0.7. The figures on the left
show the eigenvalue contours without the additional dissipation and the ones on the right show the
contours with the dissipation switched on. A Ce value of 5×10−4 was used in Equation (34) to
switch on the additional dissipation. As seen in Figure 7, the additional dissipation has eliminated
negative eigenvalues and it also has reduced spatial oscillations. The additional dissipation has also
contributed to a small increase in the total drag value. The total drag force calculated is 116.696,
when the additional dissipation is switched on as compared with 115.651 without dissipation.

In Table I, comparison between the CBS results with and without damping and several other
numerical experiments are presented. The drag forces are in an excellent agreement with the
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Figure 7. Eigenvalues of additional stress tensor �i j =�pi j +(�/De)�i j for Oldroyd-B fluid flow past a
circular cylinder. Without(left)/with(right) artificial dissipation at De=0.7: (a) �1 contours: �1min =0.58,
�1max =111.06; (b) �1 contours: �1min =0.58, �1max =107.07; (c) �2 contours: �2min =0.0, �2max =0.70; and

(d) �2 contours: �2min =−0.03, �2max =0.76.

Table I. Drag force calculations by using CBS scheme with the Oldroyd-B model.

Mesh D Mesh C The other availably numerical results

De CBS CBS AD CBS CBS AD [16] [10] [11] [18] [14] [17]
0.0 132.357 132.060 132.30 132.34 131.32 132.358 132.36
0.01 132.245 131.917
0.1 129.288 129.422 130.33 129.09 130.363 130.36 130.343
0.2 124.856 124.766 126.63 125.20 126.626 126.62 126.618
0.3 121.753 121.714 123.26 121.87 123.193 123.19 123.195
0.4 118.798 118.962 120.76 119.50 120.596 120.59 120.596
0.5 117.185 118.314 117.127 118.80 119.11 117.97 118.836 118.83 118.832
0.6 116.324 117.728 116.290 117.121 118.17 117.13 117.792 117.77 117.786
0.7 115.684 117.214 115.651 116.696 117.84 116.69 117.340 117.32 117.328
0.8 117.252 116.994 117.98 117.23 117.373 117.36 117.370
0.9 117.291 117.030 118.50 117.89 117.787 117.79 117.865
1.0 115.556 117.418 115.427 117.154 117.80 119.32 118.78 118.501 118.49 118.560
1.1 117.230 118.00 120.39 119.69 119.466
1.2 117.450 121.65 120.50 120.650
1.3 117.757 123.07 121.54
1.4 118.248 124.66 122.86 123.587
1.5 115.215 118.422 114.992 118.321 126.32
1.6 119.393 119.522 128.01 127.172
1.7 122.921 129.67
1.8 128.373 131.37 131.285
1.85 132.30
1.9 130.035
2.0 114.801 132.372 114.561 133.216 135.839
3.0 115.137 115.592

available data at lower Deborah numbers with and without damping. Although drag values, without
damping decrease beyond a Deborah number of 0.7, the trend is reversed when the negative
eigenvalues are eliminated using the artificial damping. Among the results compared in Table I,
Caola et al.’s [16] fine mesh solution agrees more closely with the present results. However, at
Deborah numbers beyond 1.7 present results are in good agreement with majority of the reported
results.
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6. CONCLUSIONS

This research was targeted at using the CBS scheme to solve viscoelastic flow over a stationary
circular cylinder placed in a rectangular channel. The Oldroyd-B model was used in this paper.
One of the major problems of Oldrod-B model is the convergence to steady state beyond a Deborah
number of unity. In this paper we have demonstrated that the CBS scheme gives steady-state results
up to a Deborah number of three with a potential to enhance this limit further. We used an artificial
damping scheme to retain positive definitiveness of the conformation tensor. We demonstrated that
adding an additional damping increases the drag value and also makes the negative eigenvalues of
the conformation tensor disappear, in addition to giving a smoother and more accurate solution.
The major conclusions derived from the present study are:

• The CBS scheme is capable of numerically predicting Oldroyd-B fluid flow up to a Deborah
number of 3. It is clear that most of the models agree excellently up to a Deborah number
value of 0.7.

• The mesh convergence studies carried out clearly indicate that the convergence is reasonable
at all Deborah numbers considered.

• At higher Deborah numbers, the agreement with other numerical solution is poor when no
artificial damping was added. It is also obvious from the fine mesh solution of Caola et
al. [16] that drag force does not necessarily increase as dramatically as predicted by some
previous works. Caola et al.’s results closely agree with the present predictions than the other
numerical results.

• We demonstrated that artificial damping is needed to eliminate the negative eigenvalues of
the conformation matrix. This resulted in the expected trend in drag force variation. A careful
tuning of the artificial damping constant is needed to obtain an optimal artificial damping.

• Further investigation on using a variety of viscoelastic flow models, such as upper convected
Maxwell (UCM) and Phan-Thien/Tanner (PTT) models, may further increase the under-
standing and behaviour of the CBS scheme.
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